CF1383D.Rearrange

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Koa the Koala has a matrix AA of nn rows and mm columns. Elements of this matrix are distinct integers from 11 to nmn \cdot m (each number from 11 to nmn \cdot m appears exactly once in the matrix).

For any matrix MM of nn rows and mm columns let's define the following:

  • The ii -th row of MM is defined as Ri(M)=[Mi1,Mi2,,Mim]R_i(M) = [ M_{i1}, M_{i2}, \ldots, M_{im} ] for all ii ( 1in1 \le i \le n ).
  • The jj -th column of MM is defined as Cj(M)=[M1j,M2j,,Mnj]C_j(M) = [ M_{1j}, M_{2j}, \ldots, M_{nj} ] for all jj ( 1jm1 \le j \le m ).

Koa defines S(A)=(X,Y)S(A) = (X, Y) as the spectrum of AA , where XX is the set of the maximum values in rows of AA and YY is the set of the maximum values in columns of AA .

More formally:

  • X={max(R1(A)),max(R2(A)),,max(Rn(A))}X = \{ \max(R_1(A)), \max(R_2(A)), \ldots, \max(R_n(A)) \}
  • Y={max(C1(A)),max(C2(A)),,max(Cm(A))}Y = \{ \max(C_1(A)), \max(C_2(A)), \ldots, \max(C_m(A)) \}

Koa asks you to find some matrix AA' of nn rows and mm columns, such that each number from 11 to nmn \cdot m appears exactly once in the matrix, and the following conditions hold:

  • S(A)=S(A)S(A') = S(A)
  • Ri(A)R_i(A') is bitonic for all ii ( 1in1 \le i \le n )
  • Cj(A)C_j(A') is bitonic for all jj ( 1jm1 \le j \le m )

An array tt ( t1,t2,,tkt_1, t_2, \ldots, t_k ) is called bitonic if it first increases and then decreases. More formally: tt is bitonic if there exists some position pp ( 1pk1 \le p \le k ) such that: t1<t2<<tp>tp+1>>tkt_1 < t_2 < \ldots < t_p > t_{p+1} > \ldots > t_k .

Help Koa to find such matrix or to determine that it doesn't exist.

输入格式

The first line of the input contains two integers nn and mm ( 1n,m2501 \le n, m \le 250 ) — the number of rows and columns of AA .

Each of the ollowing nn lines contains mm integers. The jj -th integer in the ii -th line denotes element AijA_{ij} ( 1Aijnm1 \le A_{ij} \le n \cdot m ) of matrix AA . It is guaranteed that every number from 11 to nmn \cdot m appears exactly once among elements of the matrix.

输出格式

If such matrix doesn't exist, print 1-1 on a single line.

Otherwise, the output must consist of nn lines, each one consisting of mm space separated integers — a description of AA' .

The jj -th number in the ii -th line represents the element AijA'_{ij} .

Every integer from 11 to nmn \cdot m should appear exactly once in AA' , every row and column in AA' must be bitonic and S(A)=S(A)S(A) = S(A') must hold.

If there are many answers print any.

输入输出样例

  • 输入#1

    3 3
    3 5 6
    1 7 9
    4 8 2

    输出#1

    9 5 1
    7 8 2
    3 6 4
  • 输入#2

    2 2
    4 1
    3 2

    输出#2

    4 1
    3 2
  • 输入#3

    3 4
    12 10 8 6
    3 4 5 7
    2 11 9 1

    输出#3

    12 8 6 1
    10 11 9 2
    3 4 5 7

说明/提示

Let's analyze the first sample:

For matrix AA we have:

  • Rows:

    • R1(A)=[3,5,6];max(R1(A))=6R_1(A) = [3, 5, 6]; \max(R_1(A)) = 6
    • R2(A)=[1,7,9];max(R2(A))=9R_2(A) = [1, 7, 9]; \max(R_2(A)) = 9
    • R3(A)=[4,8,2];max(R3(A))=8R_3(A) = [4, 8, 2]; \max(R_3(A)) = 8
  • Columns:

    • C1(A)=[3,1,4];max(C1(A))=4C_1(A) = [3, 1, 4]; \max(C_1(A)) = 4
    • C2(A)=[5,7,8];max(C2(A))=8C_2(A) = [5, 7, 8]; \max(C_2(A)) = 8
    • C3(A)=[6,9,2];max(C3(A))=9C_3(A) = [6, 9, 2]; \max(C_3(A)) = 9
  • X={max(R1(A)),max(R2(A)),max(R3(A))}={6,9,8}X = \{ \max(R_1(A)), \max(R_2(A)), \max(R_3(A)) \} = \{ 6, 9, 8 \}

  • Y={max(C1(A)),max(C2(A)),max(C3(A))}={4,8,9}Y = \{ \max(C_1(A)), \max(C_2(A)), \max(C_3(A)) \} = \{ 4, 8, 9 \}

  • So S(A)=(X,Y)=({6,9,8},{4,8,9})S(A) = (X, Y) = (\{ 6, 9, 8 \}, \{ 4, 8, 9 \})

For matrix AA' we have:

  • Rows:

    • R1(A)=[9,5,1];max(R1(A))=9R_1(A') = [9, 5, 1]; \max(R_1(A')) = 9
    • R2(A)=[7,8,2];max(R2(A))=8R_2(A') = [7, 8, 2]; \max(R_2(A')) = 8
    • R3(A)=[3,6,4];max(R3(A))=6R_3(A') = [3, 6, 4]; \max(R_3(A')) = 6
  • Columns:

    • C1(A)=[9,7,3];max(C1(A))=9C_1(A') = [9, 7, 3]; \max(C_1(A')) = 9
    • C2(A)=[5,8,6];max(C2(A))=8C_2(A') = [5, 8, 6]; \max(C_2(A')) = 8
    • C3(A)=[1,2,4];max(C3(A))=4C_3(A') = [1, 2, 4]; \max(C_3(A')) = 4
  • Note that each of this arrays are bitonic.

  • X={max(R1(A)),max(R2(A)),max(R3(A))}={9,8,6}X = \{ \max(R_1(A')), \max(R_2(A')), \max(R_3(A')) \} = \{ 9, 8, 6 \}

  • Y={max(C1(A)),max(C2(A)),max(C3(A))}={9,8,4}Y = \{ \max(C_1(A')), \max(C_2(A')), \max(C_3(A')) \} = \{ 9, 8, 4 \}

  • So S(A)=(X,Y)=({9,8,6},{9,8,4})S(A') = (X, Y) = (\{ 9, 8, 6 \}, \{ 9, 8, 4 \})

首页