CF1391A.Suborrays

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

A permutation of length nn is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation ( 22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation ( n=3n=3 but there is 44 in the array).

For a positive integer nn , we call a permutation pp of length nn good if the following condition holds for every pair ii and jj ( 1ijn1 \le i \le j \le n ) —

  • (pi OR pi+1 OR  OR pj1 OR pj)ji+1(p_i \text{ OR } p_{i+1} \text{ OR } \ldots \text{ OR } p_{j-1} \text{ OR } p_{j}) \ge j-i+1 , where OR\text{OR} denotes the bitwise OR operation.

In other words, a permutation pp is good if for every subarray of pp , the OR\text{OR} of all elements in it is not less than the number of elements in that subarray.

Given a positive integer nn , output any good permutation of length nn . We can show that for the given constraints such a permutation always exists.

输入格式

Each test contains multiple test cases. The first line contains the number of test cases tt ( 1t1001 \le t \le 100 ). Description of the test cases follows.

The first and only line of every test case contains a single integer nn ( 1n1001 \le n \le 100 ).

输出格式

For every test, output any good permutation of length nn on a separate line.

输入输出样例

  • 输入#1

    3
    1
    3
    7

    输出#1

    1
    3 1 2
    4 3 5 2 7 1 6

说明/提示

For n=3n = 3 , [3,1,2][3,1,2] is a good permutation. Some of the subarrays are listed below.

  • 3 OR 1=323\text{ OR }1 = 3 \geq 2 (i=1,j=2)(i = 1,j = 2)
  • 3 OR 1 OR 2=333\text{ OR }1\text{ OR }2 = 3 \geq 3 (i=1,j=3)(i = 1,j = 3)
  • 1 OR 2=321\text{ OR }2 = 3 \geq 2 (i=2,j=3)(i = 2,j = 3)
  • 111 \geq 1 (i=2,j=2)(i = 2,j = 2)

Similarly, you can verify that [4,3,5,2,7,1,6][4,3,5,2,7,1,6] is also good.

首页