CF1359E.Modular Stability
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
We define xmody as the remainder of division of x by y ( % operator in C++ or Java, mod operator in Pascal).
Let's call an array of positive integers [a1,a2,…,ak] stable if for every permutation p of integers from 1 to k , and for every non-negative integer x , the following condition is met:
$ (((x \bmod a_1) \bmod a_2) \dots \bmod a_{k - 1}) \bmod a_k = (((x \bmod a_{p_1}) \bmod a_{p_2}) \dots \bmod a_{p_{k - 1}}) \bmod a_{p_k} $ That is, for each non-negative integer x , the value of (((xmoda1)moda2)…modak−1)modak does not change if we reorder the elements of the array a .
For two given integers n and k , calculate the number of stable arrays [a1,a2,…,ak] such that 1≤a1<a2<⋯<ak≤n .
输入格式
The only line contains two integers n and k ( 1≤n,k≤5⋅105 ).
输出格式
Print one integer — the number of stable arrays [a1,a2,…,ak] such that 1≤a1<a2<⋯<ak≤n . Since the answer may be large, print it modulo 998244353 .
输入输出样例
输入#1
7 3
输出#1
16
输入#2
3 7
输出#2
0
输入#3
1337 42
输出#3
95147305
输入#4
1 1
输出#4
1
输入#5
500000 1
输出#5
500000