CF1264F.Beautiful Fibonacci Problem

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

The well-known Fibonacci sequence $F_0, F_1, F_2,\ldots $ is defined as follows:

  • F0=0,F1=1F_0 = 0, F_1 = 1 .
  • For each i2i \geq 2 : Fi=Fi1+Fi2F_i = F_{i - 1} + F_{i - 2} .

Given an increasing arithmetic sequence of positive integers with nn elements: (a,a+d,a+2d,,a+(n1)d)(a, a + d, a + 2\cdot d,\ldots, a + (n - 1)\cdot d) .

You need to find another increasing arithmetic sequence of positive integers with nn elements (b,b+e,b+2e,,b+(n1)e)(b, b + e, b + 2\cdot e,\ldots, b + (n - 1)\cdot e) such that:

  • 0<b,e<2640 < b, e < 2^{64} ,
  • for all 0i<n0\leq i < n , the decimal representation of a+ida + i \cdot d appears as substring in the last 1818 digits of the decimal representation of Fb+ieF_{b + i \cdot e} (if this number has less than 1818 digits, then we consider all its digits).

输入格式

The first line contains three positive integers nn , aa , dd ( 1n,a,d,a+(n1)d<1061 \leq n, a, d, a + (n - 1) \cdot d < 10^6 ).

输出格式

If no such arithmetic sequence exists, print 1-1 .

Otherwise, print two integers bb and ee , separated by space in a single line ( 0<b,e<2640 < b, e < 2^{64} ).

If there are many answers, you can output any of them.

输入输出样例

  • 输入#1

    3 1 1
    

    输出#1

    2 1
  • 输入#2

    5 1 2
    

    输出#2

    19 5
    

说明/提示

In the first test case, we can choose (b,e)=(2,1)(b, e) = (2, 1) , because F2=1,F3=2,F4=3F_2 = 1, F_3 = 2, F_4 = 3 .

In the second test case, we can choose (b,e)=(19,5)(b, e) = (19, 5) because:

  • F19=4181F_{19} = 4181 contains 11 ;
  • F24=46368F_{24} = 46368 contains 33 ;
  • F29=514229F_{29} = 514229 contains 55 ;
  • F34=5702887F_{34} = 5702887 contains 77 ;
  • F39=63245986F_{39} = 63245986 contains 99 .
首页