CF1266G.Permutation Concatenation

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let nn be an integer. Consider all permutations on integers 11 to nn in lexicographic order, and concatenate them into one big sequence PP . For example, if n=3n = 3 , then P=[1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1]P = [1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1] . The length of this sequence is nn!n \cdot n! .

Let 1ijnn!1 \leq i \leq j \leq n \cdot n! be a pair of indices. We call the sequence (Pi,Pi+1,,Pj1,Pj)(P_i, P_{i+1}, \dots, P_{j-1}, P_j) a subarray of PP .

You are given nn . Find the number of distinct subarrays of PP . Since this number may be large, output it modulo 998244353998244353 (a prime number).

输入格式

The only line contains one integer nn ( 1n1061 \leq n \leq 10^6 ), as described in the problem statement.

输出格式

Output a single integer — the number of distinct subarrays, modulo 998244353998244353 .

输入输出样例

  • 输入#1

    2
    

    输出#1

    8
    
  • 输入#2

    10
    

    输出#2

    19210869
    

说明/提示

In the first example, the sequence P=[1,2,2,1]P = [1, 2, 2, 1] . It has eight distinct subarrays: [1][1] , [2][2] , [1,2][1, 2] , [2,1][2, 1] , [2,2][2, 2] , [1,2,2][1, 2, 2] , [2,2,1][2, 2, 1] and [1,2,2,1][1, 2, 2, 1] .

首页