CF1266G.Permutation Concatenation
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Let n be an integer. Consider all permutations on integers 1 to n in lexicographic order, and concatenate them into one big sequence P . For example, if n=3 , then P=[1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1] . The length of this sequence is n⋅n! .
Let 1≤i≤j≤n⋅n! be a pair of indices. We call the sequence (Pi,Pi+1,…,Pj−1,Pj) a subarray of P .
You are given n . Find the number of distinct subarrays of P . Since this number may be large, output it modulo 998244353 (a prime number).
输入格式
The only line contains one integer n ( 1≤n≤106 ), as described in the problem statement.
输出格式
Output a single integer — the number of distinct subarrays, modulo 998244353 .
输入输出样例
输入#1
2
输出#1
8
输入#2
10
输出#2
19210869
说明/提示
In the first example, the sequence P=[1,2,2,1] . It has eight distinct subarrays: [1] , [2] , [1,2] , [2,1] , [2,2] , [1,2,2] , [2,2,1] and [1,2,2,1] .