CF1257G.Divisor Set

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an integer xx represented as a product of nn its prime divisors p1p2,pnp_1 \cdot p_2, \cdot \ldots \cdot p_n . Let SS be the set of all positive integer divisors of xx (including 11 and xx itself).

We call a set of integers DD good if (and only if) there is no pair aDa \in D , bDb \in D such that aba \ne b and aa divides bb .

Find a good subset of SS with maximum possible size. Since the answer can be large, print the size of the subset modulo 998244353998244353 .

输入格式

The first line contains the single integer nn ( 1n21051 \le n \le 2 \cdot 10^5 ) — the number of prime divisors in representation of xx .

The second line contains nn integers p1,p2,,pnp_1, p_2, \dots, p_n ( 2pi31062 \le p_i \le 3 \cdot 10^6 ) — the prime factorization of xx .

输出格式

Print the maximum possible size of a good subset modulo 998244353998244353 .

输入输出样例

  • 输入#1

    3
    2999999 43 2999957
    

    输出#1

    3
    
  • 输入#2

    6
    2 3 2 3 2 2
    

    输出#2

    3
    

说明/提示

In the first sample, x=2999999432999957x = 2999999 \cdot 43 \cdot 2999957 and one of the maximum good subsets is {43,2999957,2999999}\{ 43, 2999957, 2999999 \} .

In the second sample, x=232322=144x = 2 \cdot 3 \cdot 2 \cdot 3 \cdot 2 \cdot 2 = 144 and one of the maximum good subsets is {9,12,16}\{ 9, 12, 16 \} .

首页