CF1227G.Not Same

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given an integer array a1,a2,,ana_1, a_2, \dots, a_n , where aia_i represents the number of blocks at the ii -th position. It is guaranteed that 1ain1 \le a_i \le n .

In one operation you can choose a subset of indices of the given array and remove one block in each of these indices. You can't remove a block from a position without blocks.

All subsets that you choose should be different (unique).

You need to remove all blocks in the array using at most n+1n+1 operations. It can be proved that the answer always exists.

输入格式

The first line contains a single integer nn ( 1n1031 \le n \le 10^3 ) — length of the given array.

The second line contains nn integers a1,a2,,ana_1, a_2, \dots, a_n ( 1ain1 \le a_i \le n ) — numbers of blocks at positions 1,2,,n1, 2, \dots, n .

输出格式

In the first line print an integer opop ( 0opn+10 \le op \le n+1 ).

In each of the following opop lines, print a binary string ss of length nn . If si=s_i= '0', it means that the position ii is not in the chosen subset. Otherwise, sis_i should be equal to '1' and the position ii is in the chosen subset.

All binary strings should be distinct (unique) and aia_i should be equal to the sum of sis_i among all chosen binary strings.

If there are multiple possible answers, you can print any.

It can be proved that an answer always exists.

输入输出样例

  • 输入#1

    5
    5 5 5 5 5
    

    输出#1

    6
    11111
    01111
    10111
    11011
    11101
    11110
    
  • 输入#2

    5
    5 1 1 1 1
    

    输出#2

    5
    11000
    10000
    10100
    10010
    10001
    
  • 输入#3

    5
    4 1 5 3 4
    

    输出#3

    5
    11111
    10111
    10101
    00111
    10100
    

说明/提示

In the first example, the number of blocks decrease like that:

{5,5,5,5,5}{4,4,4,4,4}{4,3,3,3,3}{3,3,2,2,2}{2,2,2,1,1}{1,1,1,1,0}{0,0,0,0,0}\lbrace 5,5,5,5,5 \rbrace \to \lbrace 4,4,4,4,4 \rbrace \to \lbrace 4,3,3,3,3 \rbrace \to \lbrace 3,3,2,2,2 \rbrace \to \lbrace 2,2,2,1,1 \rbrace \to \lbrace 1,1,1,1,0 \rbrace \to \lbrace 0,0,0,0,0 \rbrace . And we can note that each operation differs from others.

首页