CF1234E.Special Permutations

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let's define pi(n)p_i(n) as the following permutation: [i,1,2,,i1,i+1,,n][i, 1, 2, \dots, i - 1, i + 1, \dots, n] . This means that the ii -th permutation is almost identity (i.e. which maps every element to itself) permutation but the element ii is on the first position. Examples:

  • p1(4)=[1,2,3,4]p_1(4) = [1, 2, 3, 4] ;
  • p2(4)=[2,1,3,4]p_2(4) = [2, 1, 3, 4] ;
  • p3(4)=[3,1,2,4]p_3(4) = [3, 1, 2, 4] ;
  • p4(4)=[4,1,2,3]p_4(4) = [4, 1, 2, 3] .

You are given an array x1,x2,,xmx_1, x_2, \dots, x_m ( 1xin1 \le x_i \le n ).

Let pos(p,val)pos(p, val) be the position of the element valval in pp . So, pos(p1(4),3)=3,pos(p2(4),2)=1,pos(p4(4),4)=1pos(p_1(4), 3) = 3, pos(p_2(4), 2) = 1, pos(p_4(4), 4) = 1 .

Let's define a function f(p)=i=1m1pos(p,xi)pos(p,xi+1)f(p) = \sum\limits_{i=1}^{m - 1} |pos(p, x_i) - pos(p, x_{i + 1})| , where val|val| is the absolute value of valval . This function means the sum of distances between adjacent elements of xx in pp .

Your task is to calculate f(p1(n)),f(p2(n)),,f(pn(n))f(p_1(n)), f(p_2(n)), \dots, f(p_n(n)) .

输入格式

The first line of the input contains two integers nn and mm ( 2n,m21052 \le n, m \le 2 \cdot 10^5 ) — the number of elements in each permutation and the number of elements in xx .

The second line of the input contains mm integers ( mm , not nn ) x1,x2,,xmx_1, x_2, \dots, x_m ( 1xin1 \le x_i \le n ), where xix_i is the ii -th element of xx . Elements of xx can repeat and appear in arbitrary order.

输出格式

Print nn integers: f(p1(n)),f(p2(n)),,f(pn(n))f(p_1(n)), f(p_2(n)), \dots, f(p_n(n)) .

输入输出样例

  • 输入#1

    4 4
    1 2 3 4
    

    输出#1

    3 4 6 5 
    
  • 输入#2

    5 5
    2 1 5 3 5
    

    输出#2

    9 8 12 6 8 
    
  • 输入#3

    2 10
    1 2 1 1 2 2 2 2 2 2
    

    输出#3

    3 3 
    

说明/提示

Consider the first example:

x=[1,2,3,4]x = [1, 2, 3, 4] , so

  • for the permutation p1(4)=[1,2,3,4]p_1(4) = [1, 2, 3, 4] the answer is 12+23+34=3|1 - 2| + |2 - 3| + |3 - 4| = 3 ;
  • for the permutation p2(4)=[2,1,3,4]p_2(4) = [2, 1, 3, 4] the answer is 21+13+34=4|2 - 1| + |1 - 3| + |3 - 4| = 4 ;
  • for the permutation p3(4)=[3,1,2,4]p_3(4) = [3, 1, 2, 4] the answer is 23+31+14=6|2 - 3| + |3 - 1| + |1 - 4| = 6 ;
  • for the permutation p4(4)=[4,1,2,3]p_4(4) = [4, 1, 2, 3] the answer is 23+34+41=5|2 - 3| + |3 - 4| + |4 - 1| = 5 .

Consider the second example:

x=[2,1,5,3,5]x = [2, 1, 5, 3, 5] , so

  • for the permutation p1(5)=[1,2,3,4,5]p_1(5) = [1, 2, 3, 4, 5] the answer is 21+15+53+35=9|2 - 1| + |1 - 5| + |5 - 3| + |3 - 5| = 9 ;
  • for the permutation p2(5)=[2,1,3,4,5]p_2(5) = [2, 1, 3, 4, 5] the answer is 12+25+53+35=8|1 - 2| + |2 - 5| + |5 - 3| + |3 - 5| = 8 ;
  • for the permutation p3(5)=[3,1,2,4,5]p_3(5) = [3, 1, 2, 4, 5] the answer is 32+25+51+15=12|3 - 2| + |2 - 5| + |5 - 1| + |1 - 5| = 12 ;
  • for the permutation p4(5)=[4,1,2,3,5]p_4(5) = [4, 1, 2, 3, 5] the answer is 32+25+54+45=6|3 - 2| + |2 - 5| + |5 - 4| + |4 - 5| = 6 ;
  • for the permutation p5(5)=[5,1,2,3,4]p_5(5) = [5, 1, 2, 3, 4] the answer is 32+21+14+41=8|3 - 2| + |2 - 1| + |1 - 4| + |4 - 1| = 8 .
首页