CF1187F.Expected Square Beauty

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let xx be an array of integers x=[x1,x2,,xn]x = [x_1, x_2, \dots, x_n] . Let's define B(x)B(x) as a minimal size of a partition of xx into subsegments such that all elements in each subsegment are equal. For example, B([3,3,6,1,6,6,6])=4B([3, 3, 6, 1, 6, 6, 6]) = 4 using next partition: [3,3  6  1  6,6,6][3, 3\ |\ 6\ |\ 1\ |\ 6, 6, 6] .

Now you don't have any exact values of xx , but you know that xix_i can be any integer value from [li,ri][l_i, r_i] ( liril_i \le r_i ) uniformly at random. All xix_i are independent.

Calculate expected value of (B(x))2(B(x))^2 , or E((B(x))2)E((B(x))^2) . It's guaranteed that the expected value can be represented as rational fraction PQ\frac{P}{Q} where (P,Q)=1(P, Q) = 1 , so print the value PQ1mod109+7P \cdot Q^{-1} \mod 10^9 + 7 .

输入格式

The first line contains the single integer nn ( 1n21051 \le n \le 2 \cdot 10^5 ) — the size of the array xx .

The second line contains nn integers l1,l2,,lnl_1, l_2, \dots, l_n ( 1li1091 \le l_i \le 10^9 ).

The third line contains nn integers r1,r2,,rnr_1, r_2, \dots, r_n ( liri109l_i \le r_i \le 10^9 ).

输出格式

Print the single integer — E((B(x))2)E((B(x))^2) as PQ1mod109+7P \cdot Q^{-1} \mod 10^9 + 7 .

输入输出样例

  • 输入#1

    3
    1 1 1
    1 2 3
    

    输出#1

    166666673
    
  • 输入#2

    3
    3 4 5
    4 5 6
    

    输出#2

    500000010
    

说明/提示

Let's describe all possible values of xx for the first sample:

  • [1,1,1][1, 1, 1] : B(x)=1B(x) = 1 , B2(x)=1B^2(x) = 1 ;
  • [1,1,2][1, 1, 2] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [1,1,3][1, 1, 3] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [1,2,1][1, 2, 1] : B(x)=3B(x) = 3 , B2(x)=9B^2(x) = 9 ;
  • [1,2,2][1, 2, 2] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [1,2,3][1, 2, 3] : B(x)=3B(x) = 3 , B2(x)=9B^2(x) = 9 ;

So E=16(1+4+4+9+4+9)=316E = \frac{1}{6} (1 + 4 + 4 + 9 + 4 + 9) = \frac{31}{6} or 3161=16666667331 \cdot 6^{-1} = 166666673 .All possible values of xx for the second sample:

  • [3,4,5][3, 4, 5] : B(x)=3B(x) = 3 , B2(x)=9B^2(x) = 9 ;
  • [3,4,6][3, 4, 6] : B(x)=3B(x) = 3 , B2(x)=9B^2(x) = 9 ;
  • [3,5,5][3, 5, 5] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [3,5,6][3, 5, 6] : B(x)=3B(x) = 3 , B2(x)=9B^2(x) = 9 ;
  • [4,4,5][4, 4, 5] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [4,4,6][4, 4, 6] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [4,5,5][4, 5, 5] : B(x)=2B(x) = 2 , B2(x)=4B^2(x) = 4 ;
  • [4,5,6][4, 5, 6] : B(x)=3B(x) = 3 , B2(x)=9B^2(x) = 9 ;

So E=18(9+9+4+9+4+4+4+9)=528E = \frac{1}{8} (9 + 9 + 4 + 9 + 4 + 4 + 4 + 9) = \frac{52}{8} or 1321=50000001013 \cdot 2^{-1} = 500000010 .

首页