CF1188B.Count Pairs

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a prime number pp , nn integers a1,a2,,ana_1, a_2, \ldots, a_n , and an integer kk .

Find the number of pairs of indexes (i,j)(i, j) ( 1i<jn1 \le i < j \le n ) for which (ai+aj)(ai2+aj2)kmodp(a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p .

输入格式

The first line contains integers n,p,kn, p, k ( 2n31052 \le n \le 3 \cdot 10^5 , 2p1092 \le p \le 10^9 , 0kp10 \le k \le p-1 ). pp is guaranteed to be prime.

The second line contains nn integers a1,a2,,ana_1, a_2, \ldots, a_n ( 0aip10 \le a_i \le p-1 ). It is guaranteed that all elements are different.

输出格式

Output a single integer — answer to the problem.

输入输出样例

  • 输入#1

    3 3 0
    0 1 2
    

    输出#1

    1
  • 输入#2

    6 7 2
    1 2 3 4 5 6
    

    输出#2

    3

说明/提示

In the first example:

(0+1)(02+12)=11mod3(0+1)(0^2 + 1^2) = 1 \equiv 1 \bmod 3 .

(0+2)(02+22)=82mod3(0+2)(0^2 + 2^2) = 8 \equiv 2 \bmod 3 .

(1+2)(12+22)=150mod3(1+2)(1^2 + 2^2) = 15 \equiv 0 \bmod 3 .

So only 11 pair satisfies the condition.

In the second example, there are 33 such pairs: (1,5)(1, 5) , (2,3)(2, 3) , (4,6)(4, 6) .

首页