CF1174E.Ehab and the Expected GCD Problem

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let's define a function f(p)f(p) on a permutation pp as follows. Let gig_i be the greatest common divisor (GCD) of elements p1p_1 , p2p_2 , ..., pip_i (in other words, it is the GCD of the prefix of length ii ). Then f(p)f(p) is the number of distinct elements among g1g_1 , g2g_2 , ..., gng_n .

Let fmax(n)f_{max}(n) be the maximum value of f(p)f(p) among all permutations pp of integers 11 , 22 , ..., nn .

Given an integers nn , count the number of permutations pp of integers 11 , 22 , ..., nn , such that f(p)f(p) is equal to fmax(n)f_{max}(n) . Since the answer may be large, print the remainder of its division by 1000000007=109+71000\,000\,007 = 10^9 + 7 .

输入格式

The only line contains the integer nn ( 2n1062 \le n \le 10^6 ) — the length of the permutations.

输出格式

The only line should contain your answer modulo 109+710^9+7 .

输入输出样例

  • 输入#1

    2
    

    输出#1

    1
  • 输入#2

    3
    

    输出#2

    4
  • 输入#3

    6
    

    输出#3

    120

说明/提示

Consider the second example: these are the permutations of length 33 :

  • [1,2,3][1,2,3] , f(p)=1f(p)=1 .
  • [1,3,2][1,3,2] , f(p)=1f(p)=1 .
  • [2,1,3][2,1,3] , f(p)=2f(p)=2 .
  • [2,3,1][2,3,1] , f(p)=2f(p)=2 .
  • [3,1,2][3,1,2] , f(p)=2f(p)=2 .
  • [3,2,1][3,2,1] , f(p)=2f(p)=2 .

The maximum value fmax(3)=2f_{max}(3) = 2 , and there are 44 permutations pp such that f(p)=2f(p)=2 .

首页