CF1174E.Ehab and the Expected GCD Problem
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Let's define a function f(p) on a permutation p as follows. Let gi be the greatest common divisor (GCD) of elements p1 , p2 , ..., pi (in other words, it is the GCD of the prefix of length i ). Then f(p) is the number of distinct elements among g1 , g2 , ..., gn .
Let fmax(n) be the maximum value of f(p) among all permutations p of integers 1 , 2 , ..., n .
Given an integers n , count the number of permutations p of integers 1 , 2 , ..., n , such that f(p) is equal to fmax(n) . Since the answer may be large, print the remainder of its division by 1000000007=109+7 .
输入格式
The only line contains the integer n ( 2≤n≤106 ) — the length of the permutations.
输出格式
The only line should contain your answer modulo 109+7 .
输入输出样例
输入#1
2
输出#1
1
输入#2
3
输出#2
4
输入#3
6
输出#3
120
说明/提示
Consider the second example: these are the permutations of length 3 :
- [1,2,3] , f(p)=1 .
- [1,3,2] , f(p)=1 .
- [2,1,3] , f(p)=2 .
- [2,3,1] , f(p)=2 .
- [3,1,2] , f(p)=2 .
- [3,2,1] , f(p)=2 .
The maximum value fmax(3)=2 , and there are 4 permutations p such that f(p)=2 .