CF1141F1.Same Sum Blocks (Easy)

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

This problem is given in two editions, which differ exclusively in the constraints on the number nn .

You are given an array of integers a[1],a[2],,a[n].a[1], a[2], \dots, a[n]. A block is a sequence of contiguous (consecutive) elements a[l],a[l+1],,a[r]a[l], a[l+1], \dots, a[r] ( 1lrn1 \le l \le r \le n ). Thus, a block is defined by a pair of indices (l,r)(l, r) .

Find a set of blocks (l1,r1),(l2,r2),,(lk,rk)(l_1, r_1), (l_2, r_2), \dots, (l_k, r_k) such that:

  • They do not intersect (i.e. they are disjoint). Formally, for each pair of blocks (li,ri)(l_i, r_i) and (lj,rj(l_j, r_j ) where iji \neq j either ri<ljr_i < l_j or rj<lir_j < l_i .
  • For each block the sum of its elements is the same. Formally, $$$$a[l_1]+a[l_1+1]+\dots+a[r_1]=a[l_2]+a[l_2+1]+\dots+a[r_2]= $$ $$ \dots = $$ $$ a[l_k]+a[l_k+1]+\dots+a[r_k]. $$
  • The number of the blocks in the set is maximum. Formally, there does not exist a set of blocks (l_1,r_1),(l_2,r_2),dots,(l_k,r_k)(l\_1', r\_1'), (l\_2', r\_2'), \\dots, (l\_{k'}', r\_{k'}') satisfying the above two requirements with k>kk' > k$$.

The picture corresponds to the first example. Blue boxes illustrate blocks.Write a program to find such a set of blocks.

输入格式

The first line contains integer nn ( 1n501 \le n \le 50 ) — the length of the given array. The second line contains the sequence of elements a[1],a[2],,a[n]a[1], a[2], \dots, a[n] ( 105ai105-10^5 \le a_i \le 10^5 ).

输出格式

In the first line print the integer kk ( 1kn1 \le k \le n ). The following kk lines should contain blocks, one per line. In each line print a pair of indices li,ril_i, r_i ( 1lirin1 \le l_i \le r_i \le n ) — the bounds of the ii -th block. You can print blocks in any order. If there are multiple answers, print any of them.

输入输出样例

  • 输入#1

    7
    4 1 2 2 1 5 3
    

    输出#1

    3
    7 7
    2 3
    4 5
    
  • 输入#2

    11
    -5 -4 -3 -2 -1 0 1 2 3 4 5
    

    输出#2

    2
    3 4
    1 1
    
  • 输入#3

    4
    1 1 1 1
    

    输出#3

    4
    4 4
    1 1
    2 2
    3 3
    
首页