CF1132G.Greedy Subsequences

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

For some array cc , let's denote a greedy subsequence as a sequence of indices p1p_1 , p2p_2 , ..., plp_l such that 1p1<p2<<plc1 \le p_1 < p_2 < \dots < p_l \le |c| , and for each i[1,l1]i \in [1, l - 1] , pi+1p_{i + 1} is the minimum number such that pi+1>pip_{i + 1} > p_i and c[pi+1]>c[pi]c[p_{i + 1}] > c[p_i] .

You are given an array a1,a2,,ana_1, a_2, \dots, a_n . For each its subsegment of length kk , calculate the length of its longest greedy subsequence.

输入格式

The first line contains two integers nn and kk ( 1kn1061 \le k \le n \le 10^6 ) — the length of array aa and the length of subsegments.

The second line contains nn integers a1,a2,,ana_1, a_2, \dots, a_n ( 1ain1 \le a_i \le n ) — array aa .

输出格式

Print nk+1n - k + 1 integers — the maximum lengths of greedy subsequences of each subsegment having length kk . The first number should correspond to subsegment a[1..k]a[1..k] , the second — to subsegment a[2..k+1]a[2..k + 1] , and so on.

输入输出样例

  • 输入#1

    6 4
    1 5 2 5 3 6
    

    输出#1

    2 2 3 
    
  • 输入#2

    7 6
    4 5 2 5 3 6 6
    

    输出#2

    3 3 
    

说明/提示

In the first example:

  • [1,5,2,5][1, 5, 2, 5] — the longest greedy subsequences are 1,21, 2 ( [c1,c2]=[1,5][c_1, c_2] = [1, 5] ) or 3,43, 4 ( [c3,c4]=[2,5][c_3, c_4] = [2, 5] ).
  • [5,2,5,3][5, 2, 5, 3] — the sequence is 2,32, 3 ( [c2,c3]=[2,5][c_2, c_3] = [2, 5] ).
  • [2,5,3,6][2, 5, 3, 6] — the sequence is 1,2,41, 2, 4 ( [c1,c2,c4]=[2,5,6][c_1, c_2, c_4] = [2, 5, 6] ).

In the second example:

  • [4,5,2,5,3,6][4, 5, 2, 5, 3, 6] — the longest greedy subsequences are 1,2,61, 2, 6 ( [c1,c2,c6]=[4,5,6][c_1, c_2, c_6] = [4, 5, 6] ) or 3,4,63, 4, 6 ( [c3,c4,c6]=[2,5,6][c_3, c_4, c_6] = [2, 5, 6] ).
  • [5,2,5,3,6,6][5, 2, 5, 3, 6, 6] — the subsequence is 2,3,52, 3, 5 ( [c2,c3,c5]=[2,5,6][c_2, c_3, c_5] = [2, 5, 6] ).
首页