CF1091D.New Year and the Permutation Concatenation

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Let nn be an integer. Consider all permutations on integers 11 to nn in lexicographic order, and concatenate them into one big sequence pp . For example, if n=3n = 3 , then p=[1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1]p = [1, 2, 3, 1, 3, 2, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 2, 1] . The length of this sequence will be nn!n \cdot n! .

Let 1ijnn!1 \leq i \leq j \leq n \cdot n! be a pair of indices. We call the sequence (pi,pi+1,,pj1,pj)(p_i, p_{i+1}, \dots, p_{j-1}, p_j) a subarray of pp . Its length is defined as the number of its elements, i.e., ji+1j - i + 1 . Its sum is the sum of all its elements, i.e., k=ijpk\sum_{k=i}^j p_k .

You are given nn . Find the number of subarrays of pp of length nn having sum n(n+1)2\frac{n(n+1)}{2} . Since this number may be large, output it modulo 998244353998244353 (a prime number).

输入格式

The only line contains one integer nn ( 1n1061 \leq n \leq 10^6 ), as described in the problem statement.

输出格式

Output a single integer — the number of subarrays of length nn having sum n(n+1)2\frac{n(n+1)}{2} , modulo 998244353998244353 .

输入输出样例

  • 输入#1

    3
    

    输出#1

    9
    
  • 输入#2

    4
    

    输出#2

    56
    
  • 输入#3

    10
    

    输出#3

    30052700
    

说明/提示

In the first sample, there are 1616 subarrays of length 33 . In order of appearance, they are:

[1,2,3][1, 2, 3] , [2,3,1][2, 3, 1] , [3,1,3][3, 1, 3] , [1,3,2][1, 3, 2] , [3,2,2][3, 2, 2] , [2,2,1][2, 2, 1] , [2,1,3][2, 1, 3] , [1,3,2][1, 3, 2] , [3,2,3][3, 2, 3] , [2,3,1][2, 3, 1] , [3,1,3][3, 1, 3] , [1,3,1][1, 3, 1] , [3,1,2][3, 1, 2] , [1,2,3][1, 2, 3] , [2,3,2][2, 3, 2] , [3,2,1][3, 2, 1] .

Their sums are 66 , 66 , 77 , 66 , 77 , 55 , 66 , 66 , 88 , 66 , 77 , 55 , 66 , 66 , 77 , 66 . As n(n+1)2=6\frac{n(n+1)}{2} = 6 , the answer is 99 .

首页