CF1085B.Div Times Mod

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Vasya likes to solve equations. Today he wants to solve (x div k)(xmodk)=n(x~\mathrm{div}~k) \cdot (x \bmod k) = n , where div\mathrm{div} and mod\mathrm{mod} stand for integer division and modulo operations (refer to the Notes below for exact definition). In this equation, kk and nn are positive integer parameters, and xx is a positive integer unknown. If there are several solutions, Vasya wants to find the smallest possible xx . Can you help him?

输入格式

The first line contains two integers nn and kk ( 1n1061 \leq n \leq 10^6 , 2k10002 \leq k \leq 1000 ).

输出格式

Print a single integer xx — the smallest positive integer solution to (x div k)(xmodk)=n(x~\mathrm{div}~k) \cdot (x \bmod k) = n . It is guaranteed that this equation has at least one positive integer solution.

输入输出样例

  • 输入#1

    6 3
    

    输出#1

    11
    
  • 输入#2

    1 2
    

    输出#2

    3
    
  • 输入#3

    4 6
    

    输出#3

    10
    

说明/提示

The result of integer division a div ba~\mathrm{div}~b is equal to the largest integer cc such that bcab \cdot c \leq a . aa modulo bb (shortened amodba \bmod b ) is the only integer cc such that 0c<b0 \leq c < b , and aca - c is divisible by bb .

In the first sample, 11 div 3=311~\mathrm{div}~3 = 3 and 11mod3=211 \bmod 3 = 2 . Since 32=63 \cdot 2 = 6 , then x=11x = 11 is a solution to (x div 3)(xmod3)=6(x~\mathrm{div}~3) \cdot (x \bmod 3) = 6 . One can see that 1919 is the only other positive integer solution, hence 1111 is the smallest one.

首页