CF1054H.Epic Convolution

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given two arrays a0,a1,,an1a_0, a_1, \ldots, a_{n - 1} and b0,b1,,bm1b_0, b_1, \ldots, b_{m-1} , and an integer cc .

Compute the following sum:

$$\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_i b_j c^{i^2\,j^3} $$ </p><p>Since it's value can be really large, print it modulo $490019$$$.

输入格式

First line contains three integers nn , mm and cc ( 1n,m1000001 \le n, m \le 100\,000 , 1c<4900191 \le c < 490019 ).

Next line contains exactly nn integers aia_i and defines the array aa ( 0ai10000 \le a_i \le 1000 ).

Last line contains exactly mm integers bib_i and defines the array bb ( 0bi10000 \le b_i \le 1000 ).

输出格式

Print one integer — value of the sum modulo 490019490019 .

输入输出样例

  • 输入#1

    2 2 3
    0 1
    0 1
    

    输出#1

    3
    
  • 输入#2

    3 4 1
    1 1 1
    1 1 1 1
    

    输出#2

    12
    
  • 输入#3

    2 3 3
    1 2
    3 4 5
    

    输出#3

    65652
    

说明/提示

In the first example, the only non-zero summand corresponds to i=1i = 1 , j=1j = 1 and is equal to 1131=31 \cdot 1 \cdot 3^1 = 3 .

In the second example, all summands are equal to 11 .

首页