CF1060B.Maximum Sum of Digits

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a positive integer nn .

Let S(x)S(x) be sum of digits in base 10 representation of xx , for example, S(123)=1+2+3=6S(123) = 1 + 2 + 3 = 6 , S(0)=0S(0) = 0 .

Your task is to find two integers a,ba, b , such that 0a,bn0 \leq a, b \leq n , a+b=na + b = n and S(a)+S(b)S(a) + S(b) is the largest possible among all such pairs.

输入格式

The only line of input contains an integer nn (1n1012)(1 \leq n \leq 10^{12}) .

输出格式

Print largest S(a)+S(b)S(a) + S(b) among all pairs of integers a,ba, b , such that 0a,bn0 \leq a, b \leq n and a+b=na + b = n .

输入输出样例

  • 输入#1

    35
    

    输出#1

    17
    
  • 输入#2

    10000000000
    

    输出#2

    91
    

说明/提示

In the first example, you can choose, for example, a=17a = 17 and b=18b = 18 , so that S(17)+S(18)=1+7+1+8=17S(17) + S(18) = 1 + 7 + 1 + 8 = 17 . It can be shown that it is impossible to get a larger answer.

In the second test example, you can choose, for example, a=5000000001a = 5000000001 and b=4999999999b = 4999999999 , with S(5000000001)+S(4999999999)=91S(5000000001) + S(4999999999) = 91 . It can be shown that it is impossible to get a larger answer.

首页