CF1036F.Relatively Prime Powers

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Consider some positive integer xx . Its prime factorization will be of form x=2k13k25k3x = 2^{k_1} \cdot 3^{k_2} \cdot 5^{k_3} \cdot \dots

Let's call xx elegant if the greatest common divisor of the sequence k1,k2,k_1, k_2, \dots is equal to 11 . For example, numbers 5=515 = 5^1 , 12=22312 = 2^2 \cdot 3 , 72=233272 = 2^3 \cdot 3^2 are elegant and numbers 8=238 = 2^3 ( GCD=3GCD = 3 ), 2500=22542500 = 2^2 \cdot 5^4 ( GCD=2GCD = 2 ) are not.

Count the number of elegant integers from 22 to nn .

Each testcase contains several values of nn , for each of them you are required to solve the problem separately.

输入格式

The first line contains a single integer TT ( 1T1051 \le T \le 10^5 ) — the number of values of nn in the testcase.

Each of the next TT lines contains a single integer nin_i ( 2ni10182 \le n_i \le 10^{18} ).

输出格式

Print TT lines — the ii -th line should contain the number of elegant numbers from 22 to nin_i .

输入输出样例

  • 输入#1

    4
    4
    2
    72
    10
    

    输出#1

    2
    1
    61
    6
    

说明/提示

Here is the list of non-elegant numbers up to 1010 :

  • 4=22,GCD=24 = 2^2, GCD = 2 ;
  • 8=23,GCD=38 = 2^3, GCD = 3 ;
  • 9=32,GCD=29 = 3^2, GCD = 2 .

The rest have GCD=1GCD = 1 .

首页