CF1009F.Dominant Indices

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a rooted undirected tree consisting of nn vertices. Vertex 11 is the root.

Let's denote a depth array of vertex xx as an infinite sequence [dx,0,dx,1,dx,2,][d_{x, 0}, d_{x, 1}, d_{x, 2}, \dots] , where dx,id_{x, i} is the number of vertices yy such that both conditions hold:

  • xx is an ancestor of yy ;
  • the simple path from xx to yy traverses exactly ii edges.

The dominant index of a depth array of vertex xx (or, shortly, the dominant index of vertex xx ) is an index jj such that:

  • for every k<jk < j , dx,k<dx,jd_{x, k} < d_{x, j} ;
  • for every k>jk > j , dx,kdx,jd_{x, k} \le d_{x, j} .

For every vertex in the tree calculate its dominant index.

输入格式

The first line contains one integer nn ( 1n1061 \le n \le 10^6 ) — the number of vertices in a tree.

Then n1n - 1 lines follow, each containing two integers xx and yy ( 1x,yn1 \le x, y \le n , xyx \ne y ). This line denotes an edge of the tree.

It is guaranteed that these edges form a tree.

输出格式

Output nn numbers. ii -th number should be equal to the dominant index of vertex ii .

输入输出样例

  • 输入#1

    4
    1 2
    2 3
    3 4
    

    输出#1

    0
    0
    0
    0
    
  • 输入#2

    4
    1 2
    1 3
    1 4
    

    输出#2

    1
    0
    0
    0
    
  • 输入#3

    4
    1 2
    2 3
    2 4
    

    输出#3

    2
    1
    0
    0
    
首页