CF960E.Alternating Tree
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Given a tree with n nodes numbered from 1 to n . Each node i has an associated value Vi .
If the simple path from u1 to um consists of m nodes namely u1→u2→u3→…um−1→um , then its alternating function A(u1,um) is defined as A(u1,um)=i=1∑m(−1)i+1⋅Vui . A path can also have 0 edges, i.e. u1=um .
Compute the sum of alternating functions of all unique simple paths. Note that the paths are directed: two paths are considered different if the starting vertices differ or the ending vertices differ. The answer may be large so compute it modulo 109+7 .
输入格式
The first line contains an integer n (2≤n≤2⋅105) — the number of vertices in the tree.
The second line contains n space-separated integers V1,V2,…,Vn ( −109≤Vi≤109 ) — values of the nodes.
The next n−1 lines each contain two space-separated integers u and v (1≤u,v≤ n,u=v) denoting an edge between vertices u and v . It is guaranteed that the given graph is a tree.
输出格式
Print the total sum of alternating functions of all unique simple paths modulo 109+7 .
输入输出样例
输入#1
4 -4 1 5 -2 1 2 1 3 1 4
输出#1
40
输入#2
8 -2 6 -4 -4 -9 -3 -7 23 8 2 2 3 1 4 6 5 7 6 4 7 5 8
输出#2
4
说明/提示
Consider the first example.
A simple path from node 1 to node 2 : 1→2 has alternating function equal to A(1,2)=1⋅(−4)+(−1)⋅1=−5 .
A simple path from node 1 to node 3 : 1→3 has alternating function equal to A(1,3)=1⋅(−4)+(−1)⋅5=−9 .
A simple path from node 2 to node 4 : 2→1→4 has alternating function A(2,4)=1⋅(1)+(−1)⋅(−4)+1⋅(−2)=3 .
A simple path from node 1 to node 1 has a single node 1 , so A(1,1)=1⋅(−4)=−4 .
Similarly, A(2,1)=5 , A(3,1)=9 , A(4,2)=3 , A(1,4)=−2 , A(4,1)=2 , A(2,2)=1 , A(3,3)=5 , A(4,4)=−2 , A(3,4)=7 , A(4,3)=7 , A(2,3)=10 , A(3,2)=10 . So the answer is (−5)+(−9)+3+(−4)+5+9+3+(−2)+2+1+5+(−2)+7+7+10+10=40 .
Similarly A(1,4)=−2,A(2,2)=1,A(2,1)=5,A(2,3)=10,A(3,3)=5,A(3,1)=9,A(3,2)=10,A(3,4)=7,A(4,4)=−2,A(4,1)=2,A(4,2)=3,A(4,3)=7 which sums upto 40.