CF960E.Alternating Tree

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Given a tree with nn nodes numbered from 11 to nn . Each node ii has an associated value ViV_i .

If the simple path from u1u_1 to umu_m consists of mm nodes namely u1u2u3um1umu_1 \rightarrow u_2 \rightarrow u_3 \rightarrow \dots u_{m-1} \rightarrow u_{m} , then its alternating function A(u1,um)A(u_{1},u_{m}) is defined as A(u1,um)=i=1m(1)i+1VuiA(u_{1},u_{m}) = \sum\limits_{i=1}^{m} (-1)^{i+1} \cdot V_{u_{i}} . A path can also have 00 edges, i.e. u1=umu_{1}=u_{m} .

Compute the sum of alternating functions of all unique simple paths. Note that the paths are directed: two paths are considered different if the starting vertices differ or the ending vertices differ. The answer may be large so compute it modulo 109+710^{9}+7 .

输入格式

The first line contains an integer nn (2n2105)(2 \leq n \leq 2\cdot10^{5} ) — the number of vertices in the tree.

The second line contains nn space-separated integers V1,V2,,VnV_1, V_2, \ldots, V_n ( 109Vi109-10^9\leq V_i \leq 10^9 ) — values of the nodes.

The next n1n-1 lines each contain two space-separated integers uu and vv (1u,vn,uv)(1\leq u, v\leq n, u \neq v) denoting an edge between vertices uu and vv . It is guaranteed that the given graph is a tree.

输出格式

Print the total sum of alternating functions of all unique simple paths modulo 109+710^{9}+7 .

输入输出样例

  • 输入#1

    4
    -4 1 5 -2
    1 2
    1 3
    1 4
    

    输出#1

    40
    
  • 输入#2

    8
    -2 6 -4 -4 -9 -3 -7 23
    8 2
    2 3
    1 4
    6 5
    7 6
    4 7
    5 8
    

    输出#2

    4
    

说明/提示

Consider the first example.

A simple path from node 11 to node 22 : 121 \rightarrow 2 has alternating function equal to A(1,2)=1(4)+(1)1=5A(1,2) = 1 \cdot (-4)+(-1) \cdot 1 = -5 .

A simple path from node 11 to node 33 : 131 \rightarrow 3 has alternating function equal to A(1,3)=1(4)+(1)5=9A(1,3) = 1 \cdot (-4)+(-1) \cdot 5 = -9 .

A simple path from node 22 to node 44 : 2142 \rightarrow 1 \rightarrow 4 has alternating function A(2,4)=1(1)+(1)(4)+1(2)=3A(2,4) = 1 \cdot (1)+(-1) \cdot (-4)+1 \cdot (-2) = 3 .

A simple path from node 11 to node 11 has a single node 11 , so A(1,1)=1(4)=4A(1,1) = 1 \cdot (-4) = -4 .

Similarly, A(2,1)=5A(2, 1) = 5 , A(3,1)=9A(3, 1) = 9 , A(4,2)=3A(4, 2) = 3 , A(1,4)=2A(1, 4) = -2 , A(4,1)=2A(4, 1) = 2 , A(2,2)=1A(2, 2) = 1 , A(3,3)=5A(3, 3) = 5 , A(4,4)=2A(4, 4) = -2 , A(3,4)=7A(3, 4) = 7 , A(4,3)=7A(4, 3) = 7 , A(2,3)=10A(2, 3) = 10 , A(3,2)=10A(3, 2) = 10 . So the answer is (5)+(9)+3+(4)+5+9+3+(2)+2+1+5+(2)+7+7+10+10=40(-5) + (-9) + 3 + (-4) + 5 + 9 + 3 + (-2) + 2 + 1 + 5 + (-2) + 7 + 7 + 10 + 10 = 40 .

Similarly A(1,4)=2,A(2,2)=1,A(2,1)=5,A(2,3)=10,A(3,3)=5,A(3,1)=9,A(3,2)=10,A(3,4)=7,A(4,4)=2,A(4,1)=2,A(4,2)=3,A(4,3)=7A(1,4)=-2, A(2,2)=1, A(2,1)=5, A(2,3)=10, A(3,3)=5, A(3,1)=9, A(3,2)=10, A(3,4)=7, A(4,4)=-2, A(4,1)=2, A(4,2)=3 , A(4,3)=7 which sums upto 40.

首页