CF961G.Partitions

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a set of nn elements indexed from 11 to nn . The weight of ii -th element is wiw_{i} . The weight of some subset of a given set is denoted as . The weight of some partition RR of a given set into kk subsets is (recall that a partition of a given set is a set of its subsets such that every element of the given set belongs to exactly one subset in partition).

Calculate the sum of weights of all partitions of a given set into exactly kk non-empty subsets, and print it modulo 109+710^{9}+7 . Two partitions are considered different iff there exist two elements xx and yy such that they belong to the same set in one of the partitions, and to different sets in another partition.

输入格式

The first line contains two integers nn and kk ( 1<=k<=n<=21051<=k<=n<=2·10^{5} ) — the number of elements and the number of subsets in each partition, respectively.

The second line contains nn integers wiw_{i} ( 1<=wi<=1091<=w_{i}<=10^{9} )— weights of elements of the set.

输出格式

Print one integer — the sum of weights of all partitions of a given set into kk non-empty subsets, taken modulo 109+710^{9}+7 .

输入输出样例

  • 输入#1

    4 2
    2 3 2 3
    

    输出#1

    160
    
  • 输入#2

    5 2
    1 2 3 4 5
    

    输出#2

    645
    

说明/提示

Possible partitions in the first sample:

  1. {{1,2,3},{4}}\{\{1,2,3\},\{4\}\} , W(R)=3(w1+w2+w3)+1w4=24W(R)=3\cdot(w_{1}+w_{2}+w_{3})+1\cdot w_{4}=24 ;
  2. {{1,2,4},{3}}\{\{1,2,4\},\{3\}\} , W(R)=26W(R)=26 ;
  3. {{1,3,4},{2}}\{\{1,3,4\},\{2\}\} , W(R)=24W(R)=24 ;
  4. {{1,2},{3,4}}\{\{1,2\},\{3,4\}\} , W(R)=2(w1+w2)+2(w3+w4)=20W(R)=2\cdot(w_{1}+w_{2})+2\cdot(w_{3}+w_{4})=20 ;
  5. {{1,3},{2,4}}\{\{1,3\},\{2,4\}\} , W(R)=20W(R)=20 ;
  6. {{1,4},{2,3}}\{\{1,4\},\{2,3\}\} , W(R)=20W(R)=20 ;
  7. {{1},{2,3,4}}\{\{1\},\{2,3,4\}\} , W(R)=26W(R)=26 ;

Possible partitions in the second sample:

  1. {{1,2,3,4},{5}}\{\{1,2,3,4\},\{5\}\} , W(R)=45W(R)=45 ;
  2. {{1,2,3,5},{4}}\{\{1,2,3,5\},\{4\}\} , W(R)=48W(R)=48 ;
  3. {{1,2,4,5},{3}}\{\{1,2,4,5\},\{3\}\} , W(R)=51W(R)=51 ;
  4. {{1,3,4,5},{2}}\{\{1,3,4,5\},\{2\}\} , W(R)=54W(R)=54 ;
  5. {{2,3,4,5},{1}}\{\{2,3,4,5\},\{1\}\} , W(R)=57W(R)=57 ;
  6. {{1,2,3},{4,5}}\{\{1,2,3\},\{4,5\}\} , W(R)=36W(R)=36 ;
  7. {{1,2,4},{3,5}}\{\{1,2,4\},\{3,5\}\} , W(R)=37W(R)=37 ;
  8. {{1,2,5},{3,4}}\{\{1,2,5\},\{3,4\}\} , W(R)=38W(R)=38 ;
  9. {{1,3,4},{2,5}}\{\{1,3,4\},\{2,5\}\} , W(R)=38W(R)=38 ;
  10. {{1,3,5},{2,4}}\{\{1,3,5\},\{2,4\}\} , W(R)=39W(R)=39 ;
  11. {{1,4,5},{2,3}}\{\{1,4,5\},\{2,3\}\} , W(R)=40W(R)=40 ;
  12. {{2,3,4},{1,5}}\{\{2,3,4\},\{1,5\}\} , W(R)=39W(R)=39 ;
  13. {{2,3,5},{1,4}}\{\{2,3,5\},\{1,4\}\} , W(R)=40W(R)=40 ;
  14. {{2,4,5},{1,3}}\{\{2,4,5\},\{1,3\}\} , W(R)=41W(R)=41 ;
  15. {{3,4,5},{1,2}}\{\{3,4,5\},\{1,2\}\} , W(R)=42W(R)=42 .
首页