CF1933C.Turtle Fingers: Count the Values of k

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given three positive integers aa , bb and ll ( a,b,l>0a,b,l>0 ).

It can be shown that there always exists a way to choose non-negative (i.e. 0\ge 0 ) integers kk , xx , and yy such that l=kaxbyl = k \cdot a^x \cdot b^y .

Your task is to find the number of distinct possible values of kk across all such ways.

输入格式

The first line contains the integer tt ( 1t1041 \le t \le 10^4 ) — the number of test cases.

The following tt lines contain three integers, aa , bb and ll ( 2a,b1002 \le a, b \le 100 , 1l1061 \le l \le 10^6 ) — description of a test case.

输出格式

Output tt lines, with the ii -th ( 1it1 \le i \le t ) line containing an integer, the answer to the ii -th test case.

输入输出样例

  • 输入#1

    11
    2 5 20
    2 5 21
    4 6 48
    2 3 72
    3 5 75
    2 2 1024
    3 7 83349
    100 100 1000000
    7 3 2
    2 6 6
    17 3 632043

    输出#1

    6
    1
    5
    12
    6
    11
    24
    4
    1
    3
    24

说明/提示

In the first test case, a=2,b=5,l=20a=2, b=5, l=20 . The possible values of kk (and corresponding x,yx,y ) are as follows:

  • Choose k=1,x=2,y=1k = 1, x = 2, y = 1 . Then kaxby=12251=20=lk \cdot a^x \cdot b^y = 1 \cdot 2^2 \cdot 5^1 = 20 = l .
  • Choose k=2,x=1,y=1k = 2, x = 1, y = 1 . Then kaxby=22151=20=lk \cdot a^x \cdot b^y = 2 \cdot 2^1 \cdot 5^1 = 20 = l .
  • Choose k=4,x=0,y=1k = 4, x = 0, y = 1 . Then kaxby=42051=20=lk \cdot a^x \cdot b^y = 4 \cdot 2^0 \cdot 5^1 = 20 = l .
  • Choose k=5,x=2,y=0k = 5, x = 2, y = 0 . Then kaxby=52250=20=lk \cdot a^x \cdot b^y = 5 \cdot 2^2 \cdot 5^0 = 20 = l .
  • Choose k=10,x=1,y=0k = 10, x = 1, y = 0 . Then kaxby=102150=20=lk \cdot a^x \cdot b^y = 10 \cdot 2^1 \cdot 5^0 = 20 = l .
  • Choose k=20,x=0,y=0k = 20, x = 0, y = 0 . Then kaxby=202050=20=lk \cdot a^x \cdot b^y = 20 \cdot 2^0 \cdot 5^0 = 20 = l .

In the second test case, a=2,b=5,l=21a=2, b=5, l=21 . Note that l=21l = 21 is not divisible by either a=2a = 2 or b=5b = 5 . Therefore, we can only set x=0,y=0x = 0, y = 0 , which corresponds to k=21k = 21 .

In the third test case, a=4,b=6,l=48a=4, b=6, l=48 . The possible values of kk (and corresponding x,yx,y ) are as follows:

  • Choose k=2,x=1,y=1k = 2, x = 1, y = 1 . Then kaxby=24161=48=lk \cdot a^x \cdot b^y = 2 \cdot 4^1 \cdot 6^1 = 48 = l .
  • Choose k=3,x=2,y=0k = 3, x = 2, y = 0 . Then kaxby=34260=48=lk \cdot a^x \cdot b^y = 3 \cdot 4^2 \cdot 6^0 = 48 = l .
  • Choose k=8,x=0,y=1k = 8, x = 0, y = 1 . Then kaxby=84061=48=lk \cdot a^x \cdot b^y = 8 \cdot 4^0 \cdot 6^1 = 48 = l .
  • Choose k=12,x=1,y=0k = 12, x = 1, y = 0 . Then kaxby=124160=48=lk \cdot a^x \cdot b^y = 12 \cdot 4^1 \cdot 6^0 = 48 = l .
  • Choose k=48,x=0,y=0k = 48, x = 0, y = 0 . Then kaxby=484060=48=lk \cdot a^x \cdot b^y = 48 \cdot 4^0 \cdot 6^0 = 48 = l .
首页