CF1934E.Weird LCM Operations

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Given an integer nn , you construct an array aa of nn integers, where ai=ia_i = i for all integers ii in the range [1,n][1, n] . An operation on this array is defined as follows:

  • Select three distinct indices ii , jj , and kk from the array, and let x=aix = a_i , y=ajy = a_j , and z=akz = a_k .
  • Update the array as follows: ai=lcm(y,z)a_i = \operatorname{lcm}(y, z) , aj=lcm(x,z)a_j = \operatorname{lcm}(x, z) , and ak=lcm(x,y)a_k = \operatorname{lcm}(x, y) , where lcm\operatorname{lcm} represents the least common multiple.

Your task is to provide a possible sequence of operations, containing at most n6+5\lfloor \frac{n}{6} \rfloor + 5 operations such that after executing these operations, if you create a set containing the greatest common divisors (GCDs) of all subsequences with a size greater than 11 , then all numbers from 11 to nn should be present in this set.After all the operations ai1018a_i \le 10^{18} should hold for all 1in1 \le i \le n .

We can show that an answer always exists.

输入格式

The first line contains one integer tt ( 1t1021 \le t \le 10^2 ) — the number of test cases. The description of the test cases follows.

The first and only line of each test case contains an integer nn ( 3n31043 \leq n \leq 3 \cdot 10^{4} ) — the length of the array.

It is guaranteed that the sum of nn over all test cases does not exceed 31043 \cdot 10^{4} .

输出格式

The first line should contain an integer kk ( 0kn6+50 \leq k \leq \lfloor \frac{n}{6} \rfloor + 5 ) — where kk is the number of operations.

The next kk lines should contain the description of each operation i.e. 33 integers ii , jj and kk , where 1i,j,kn1 \leq i, j, k \leq n and all must be distinct.

输入输出样例

  • 输入#1

    3
    3
    4
    7

    输出#1

    1
    1 2 3
    1
    1 3 4
    3
    3 5 7
    5 6 7
    2 3 4

说明/提示

In the third test case, a=[1,2,3,4,5,6,7]a = [1, 2, 3, 4, 5, 6, 7] .

First operation:

i=3i = 3 , j=5j = 5 , k=7k = 7

x=3x = 3 , y=5y = 5 , z=7z = 7 .

a=[1,2,lcm(y,z),4,lcm(x,z),6,lcm(x,y)]a = [1, 2, \operatorname{lcm}(y,z), 4, \operatorname{lcm}(x,z), 6, \operatorname{lcm}(x,y)] = [1,2,35,4,21,6,15][1, 2, \color{red}{35}, 4, \color{red}{21}, 6, \color{red}{15}] .

Second operation:

i=5i = 5 , j=6j = 6 , k=7k = 7

x=21x = 21 , y=6y = 6 , z=15z = 15 .

a=[1,2,35,4,lcm(y,z),lcm(x,z),lcm(x,y)]a = [1, 2, 35, 4, \operatorname{lcm}(y,z), \operatorname{lcm}(x,z), \operatorname{lcm}(x,y)] = [1,2,35,4,30,105,42][1, 2, 35, 4, \color{red}{30}, \color{red}{105}, \color{red}{42}] .

Third operation:

i=2i = 2 , j=3j = 3 , k=4k = 4

x=2x = 2 , y=35y = 35 , z=4z = 4 .

a=[1,lcm(y,z),lcm(x,z),lcm(x,y),30,105,42]a = [1, \operatorname{lcm}(y,z), \operatorname{lcm}(x,z), \operatorname{lcm}(x,y), 30, 105, 42] = [1,140,4,70,30,105,42][1, \color{red}{140}, \color{red}{4}, \color{red}{70}, 30, 105, 42] .

Subsequences whose GCD equal to ii is as follows:

gcd(a1,a2)=gcd(1,140)=1\gcd(a_1, a_2) = \gcd(1, 140) = 1

gcd(a3,a4)=gcd(4,70)=2\gcd(a_3, a_4) = \gcd(4, 70) = 2

gcd(a5,a6,a7)=gcd(30,105,42)=3\gcd(a_5, a_6, a_7) = \gcd(30, 105, 42) = 3

gcd(a2,a3)=gcd(140,4)=4\gcd(a_2, a_3) = \gcd(140, 4) = 4

gcd(a2,a4,a5,a6)=gcd(140,70,30,105)=5\gcd(a_2, a_4, a_5, a_6) = \gcd(140, 70, 30, 105) = 5

gcd(a5,a7)=gcd(30,42)=6\gcd(a_5, a_7) = \gcd(30, 42) = 6

gcd(a2,a4,a6,a7)=gcd(140,70,105,42)=7\gcd(a_2, a_4, a_6, a_7) = \gcd(140, 70, 105, 42) = 7

首页