CF1936E.Yet Yet Another Permutation Problem
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
You are given a permutation p of length n .
Please count the number of permutations q of length n which satisfy the following:
- for each 1≤i<n , max(q1,…,qi)=max(p1,…,pi) .
Since the answer may be large, output the answer modulo 998244353 .
输入格式
Each test contains multiple test cases. The first line contains the number of test cases t ( 1≤t≤104 ). The description of the test cases follows.
The first line of each test case contains a single integer n ( 2≤n≤2⋅105 ).
The second line of each test case contains n integers p1,p2,…,pn ( 1≤pi≤n ). It is guaranteed that p is a permutation.
It is guaranteed that the sum of n over all test cases does not exceed 2⋅105 .
输出格式
For each test case, print a single integer — the answer modulo 998244353 .
输入输出样例
输入#1
6 2 2 1 3 1 2 3 3 3 1 2 4 2 4 1 3 5 3 5 1 4 2 15 6 13 2 8 7 11 1 3 9 15 4 5 12 10 14
输出#1
1 3 2 4 18 424488915
说明/提示
In the first test case, p=[2,1] . The only suitable q is [1,2] . Indeed, we need to satisfy the inequality q1=p1 . It only holds for q=[1,2] .
In the second test case, p=[1,2,3] . So q has to satisfy two inequalities: q1=p1 and max(q1,q2)=max(1,2)=2 . One can prove that this only holds for the following 3 permutations:
- q=[2,3,1] : in this case q1=2=1 and max(q1,q2)=3=2 ;
- q=[3,1,2] : in this case q1=3=1 and max(q1,q2)=3=2 ;
- q=[3,2,1] : in this case q1=3=1 and max(q1,q2)=3=2 .