CF1936E.Yet Yet Another Permutation Problem

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

You are given a permutation pp of length nn .

Please count the number of permutations qq of length nn which satisfy the following:

  • for each 1i<n1 \le i < n , max(q1,,qi)max(p1,,pi)\max(q_1,\ldots,q_i) \neq \max(p_1,\ldots,p_i) .

Since the answer may be large, output the answer modulo 998244353998\,244\,353 .

输入格式

Each test contains multiple test cases. The first line contains the number of test cases tt ( 1t1041 \le t \le 10^4 ). The description of the test cases follows.

The first line of each test case contains a single integer nn ( 2n21052 \le n \le 2 \cdot 10^5 ).

The second line of each test case contains nn integers p1,p2,,pnp_1, p_2, \ldots, p_n ( 1pin1 \le p_i \le n ). It is guaranteed that pp is a permutation.

It is guaranteed that the sum of nn over all test cases does not exceed 21052 \cdot 10^5 .

输出格式

For each test case, print a single integer — the answer modulo 998244353998\,244\,353 .

输入输出样例

  • 输入#1

    6
    2
    2 1
    3
    1 2 3
    3
    3 1 2
    4
    2 4 1 3
    5
    3 5 1 4 2
    15
    6 13 2 8 7 11 1 3 9 15 4 5 12 10 14

    输出#1

    1
    3
    2
    4
    18
    424488915

说明/提示

In the first test case, p=[2,1]p = [2, 1] . The only suitable qq is [1,2][1, 2] . Indeed, we need to satisfy the inequality q1p1q_1 \neq p_1 . It only holds for q=[1,2]q = [1, 2] .

In the second test case, p=[1,2,3]p = [1, 2, 3] . So qq has to satisfy two inequalities: q1p1q_1 \neq p_1 and max(q1,q2)max(1,2)=2\max(q_1, q_2) \neq \max(1, 2) = 2 . One can prove that this only holds for the following 33 permutations:

  • q=[2,3,1]q = [2, 3, 1] : in this case q1=21q_1 = 2 \neq 1 and max(q1,q2)=32\max(q_1, q_2) = 3 \neq 2 ;
  • q=[3,1,2]q = [3, 1, 2] : in this case q1=31q_1 = 3 \neq 1 and max(q1,q2)=32\max(q_1, q_2) = 3 \neq 2 ;
  • q=[3,2,1]q = [3, 2, 1] : in this case q1=31q_1 = 3 \neq 1 and max(q1,q2)=32\max(q_1, q_2) = 3 \neq 2 .
首页