CF696B.Puzzles
普及/提高-
通过率:0%
AC君温馨提醒
该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。
题目描述
Barney lives in country USC (United States of Charzeh). USC has n cities numbered from 1 through n and n−1 roads between them. Cities and roads of USC form a rooted tree (Barney's not sure why it is rooted). Root of the tree is the city number 1 . Thus if one will start his journey from city 1 , he can visit any city he wants by following roads.
Some girl has stolen Barney's heart, and Barney wants to find her. He starts looking for in the root of the tree and (since he is Barney Stinson not a random guy), he uses a random DFS to search in the cities. A pseudo code of this algorithm is as follows:
let starting_time be an array of length n
current_time = 0
dfs(v):
current_time = current_time + 1
starting_time[v] = current_time
shuffle children[v] randomly (each permutation with equal possibility)
// children[v] is vector of children cities of city v
for u in children[v]:
dfs(u)
As told before, Barney will start his journey in the root of the tree (equivalent to call dfs(1)).
Now Barney needs to pack a backpack and so he wants to know more about his upcoming journey: for every city i , Barney wants to know the expected value of starting_time[i]. He's a friend of Jon Snow and knows nothing, that's why he asked for your help.
输入格式
The first line of input contains a single integer n ( 1<=n<=105 ) — the number of cities in USC.
The second line contains n−1 integers p2,p3,...,pn ( 1<=p_{i}<i ), where pi is the number of the parent city of city number i in the tree, meaning there is a road between cities numbered pi and i in USC.
输出格式
In the first and only line of output print n numbers, where i -th number is the expected value of starting_time[i].
Your answer for each city will be considered correct if its absolute or relative error does not exceed 10−6 .
输入输出样例
输入#1
7 1 2 1 1 4 4
输出#1
1.0 4.0 5.0 3.5 4.5 5.0 5.0
输入#2
12 1 1 2 2 4 4 3 3 1 10 8
输出#2
1.0 5.0 5.5 6.5 7.5 8.0 8.0 7.0 7.5 6.5 7.5 8.0