CF615D.Multipliers

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Ayrat has number nn , represented as it's prime factorization pip_{i} of size mm , i.e. n=p1p2...pmn=p_{1}·p_{2}·...·p_{m} . Ayrat got secret information that that the product of all divisors of nn taken modulo 109+710^{9}+7 is the password to the secret data base. Now he wants to calculate this value.

输入格式

The first line of the input contains a single integer mm ( 1<=m<=2000001<=m<=200000 ) — the number of primes in factorization of nn .

The second line contains mm primes numbers pip_{i} ( 2<=pi<=2000002<=p_{i}<=200000 ).

输出格式

Print one integer — the product of all divisors of nn modulo 109+710^{9}+7 .

输入输出样例

  • 输入#1

    2
    2 3
    

    输出#1

    36
    
  • 输入#2

    3
    2 3 2
    

    输出#2

    1728
    

说明/提示

In the first sample n=23=6n=2·3=6 . The divisors of 66 are 11 , 22 , 33 and 66 , their product is equal to 1236=361·2·3·6=36 .

In the second sample 232=122·3·2=12 . The divisors of 1212 are 11 , 22 , 33 , 44 , 66 and 1212 . 1234612=17281·2·3·4·6·12=1728 .

首页