CF468E.Permanent

普及/提高-

通过率:0%

AC君温馨提醒

该题目为【codeforces】题库的题目,您提交的代码将被提交至codeforces进行远程评测,并由ACGO抓取测评结果后进行展示。由于远程测评的测评机由其他平台提供,我们无法保证该服务的稳定性,若提交后无反应,请等待一段时间后再进行重试。

题目描述

Little X has solved the #P-complete problem in polynomial time recently. So he gives this task to you.

There is a special n×nn×n matrix AA , you should calculate its permanent modulo 1000000007 (109+7)1000000007 (10^{9}+7) . The special property of matrix AA is almost all its elements equal to 11 . Only kk elements have specified value.

You can find the definition of permanent at the link: https://en.wikipedia.org/wiki/Permanent

输入格式

The first line contains two space-separated integers n,kn,k ( 1<=n<=105; 1<=k<=501<=n<=10^{5}; 1<=k<=50 ).

The next kk lines contain the description of the matrix. The ii -th line contains three space-separated integers xi,yi,wix_{i},y_{i},w_{i} ( 1<=xi,yi<=n; 0<=wi<=1091<=x_{i},y_{i}<=n; 0<=w_{i}<=10^{9} ). These numbers denote that Axi,yi=wiA_{xi},y_{i}=w_{i} . All the elements of the matrix except of the given elements are equal to 11 .

It's guaranteed that all the positions (xi,yi)(x_{i},y_{i}) are distinct.

输出格式

Print the permanent of the matrix modulo 1000000007 (109+7)1000000007 (10^{9}+7) .

输入输出样例

  • 输入#1

    3 1
    1 1 2
    

    输出#1

    8
    
  • 输入#2

    10 10
    3 3 367056794
    6 2 124561273
    1 3 46718146
    6 9 415916869
    10 5 985968336
    3 1 526792265
    1 4 386357058
    10 4 349304187
    2 7 102032499
    3 6 502679075
    

    输出#2

    233333333
    
首页