废话多,请原谅
∵∠A+∠B+∠C=180°\because \angle A+\angle B+ \angle C=180\degree∵∠A+∠B+∠C=180°
又∵∠B=90°又\because \angle B=90\degree又∵∠B=90°
∴∠A+∠C=180°−90°=90°\therefore \angle A+\angle C=180\degree-90\degree=90\degree∴∠A+∠C=180°−90°=90°
∵∠A=2∠C\because \angle A=2\angle C∵∠A=2∠C
∴∠C=90°∗11+2=30°,∠A=90°−30°=60°\therefore \angle C=90\degree*\dfrac{1}{1+2}=30\degree,\angle A=90\degree-30\degree=60\degree∴∠C=90°∗1+21 =30°,∠A=90°−30°=60°
∵sin(C)=sin(30°)=12=ABAC\because \sin(C)=\sin(30\degree)=\dfrac{1}{2}=\dfrac{AB}{AC}∵sin(C)=sin(30°)=21 =ACAB
∴AC=2AB\therefore AC=2AB∴AC=2AB
Code: