本帖通过讲解3种基本的方法让读者明白求解一元二次方程的基本求解方法
请小学生在初中学生陪同下观看\huge{请小学生在初中学生陪同下观看}请小学生在初中学生陪同下观看
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
首先一元二次方程的定义是:
* 只有一个未知数的方程(通常为xxx)
* 未知数的次数是2(是2且只能是2,比如x2x ^ 2x2)
* 顺便提一嘴x+22=1x + 2 ^ 2 = 1x+22=1 不是一元二次方程,这很重要\color{red}不是一元二次方程,这很重要不是一元二次方程,这很重要
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
了解了定义,我们先来一道例题:
x2=4x^2 = 4x2=4(最简单的bushi
它的解是x\sqrt{x}x
这时候肯定有人觉得x=2x = {2}x=2
bushi哥们,(−2)2=4(-2) ^ 2 = 4(−2)2=4
所以正解是x=±2x = \pm{2}x=±2
这种x2=nx^2 = nx2=n的题,x=nx = \sqrt{n}x=n
直接秒!!!!
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
我们还能用公式法
我们要知道:(a±b)=a2±2ab+b2\color{red}{(a \pm{b}) = a^2 \pm{2ab} + b^2}(a±b)=a2±2ab+b2
这个非常重要
例题:
x2+4+4x=16x^2 + 4 + 4x = 16x2+4+4x=16
这个题如果你不知道公式可能你会:
x2+4x=12x^2 + 4x = 12x2+4x=12
x(x+4)=12x(x + 4) = 12x(x+4)=12
然后你就炸了bushi(
其实聪明的你发现他是这样的:
x2+2(x+2)+22=16x^2+2(x + 2) + 2^2 = 16x2+2(x+2)+22=16
然后套公式:
(x+2)2=16(x + 2)^2=16(x+2)2=16
x+2=4x+2 = 4x+2=4
x=2x=2x=2
这种方法针对有特征的题
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
最后一种,也是最低奥的,“真”公式法,其实就是公式法,上面那个是我自己编的名字
我们可以把一元二次方程看做这样的公式
ax2+bx+c=0(a≠0)ax^2+bx+c = 0(a \neq 0)ax2+bx+c=0(a=0)(a,b,c(a, b, c(a,b,c 为常数)))
b2−4acb ^ 2 - 4acb2−4ac=Δ\DeltaΔ
* 当Δ>0\Delta > 0Δ>0
方程有两个解:
x1=−b+Δ2ax_{1} = \frac{-b+ \sqrt{\Delta}}{2a}x1 =2a−b+Δ
x2=−b−Δ2ax_{2} = \frac{-b- \sqrt{\Delta}}{2a}x2 =2a−b−Δ
* 当Δ=0\Delta = 0Δ=0
方程有一个解
x=−b2ax = \frac{-b}{2a}x=2a−b
* 当Δ<0\Delta < 0Δ<0
方程无解
综上所述,公式:x=−b±b2−4ac2ax = \frac{-b \pm{\sqrt{b^2-4ac}}}{2a}x=2a−b±b2−4ac
例题:
x2+4x+4=16x^2+4x+4=16x2+4x+4=16
套公式:
Δ=16−16\Delta = 16 - 16Δ=16−16
∵Δ=0\because \Delta = 0∵Δ=0
∴\therefore∴有1个解
∴x=42=2\therefore x = \frac{4}{2} = 2∴x=24 =2
∴x=2\therefore x = 2∴x=2
我就拿前面的简单题写了毕竟太难我也不会
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
基本就到这了
最后:
求精啊AC君\huge{求精啊AC君}求精啊AC君